Spray Development and Vaporization

Guidance on Experiments for "Spray G"

Experimental Objectives

- Results will be used (similar to Spray A):
 - to check the reproducibility of the measurements between facilities, operating conditions and injectors (boundary condition verification)
 - to measure possible dispersions between injectors and/or experimental installations
 - as input data for model calibration (base conditions, "Spray G")

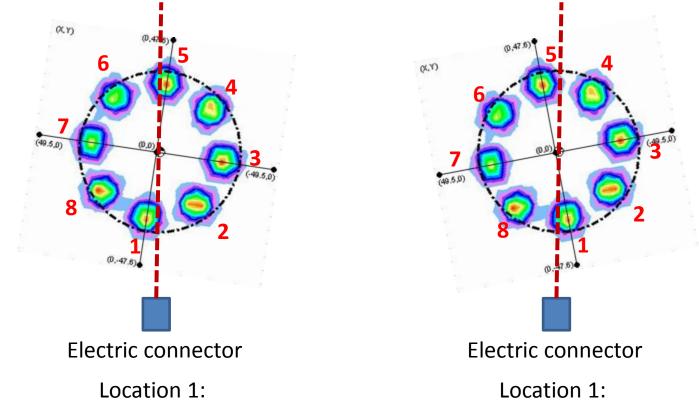
Experimental conditions

- From ECN2: Gasoline Spray Session
- <u>Parameter</u>
- •
- Fuel
- Fuel pressure
- Fuel temperature
- Injector temperature
- Ambient pressure
- Ambient temperature
- Injected quantity
- Number of injections

Condition 1 Late injection Iso-octane 20 MPa 90° C 90° C 90° C 0.6 MPa 300° C 10 mg

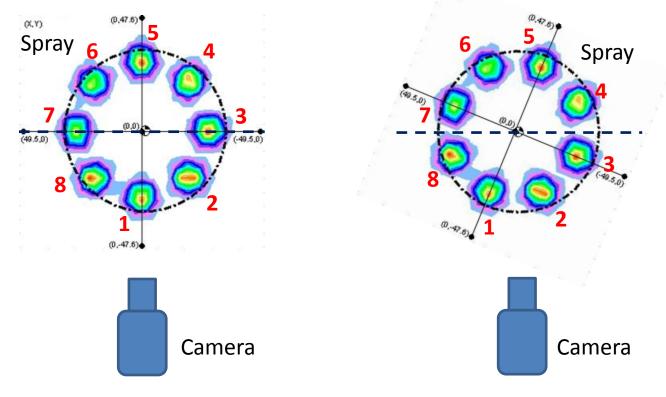
1

Data Needed from Experimentalists


- Boundary condition measurements
 - Temperature distribution of ambient gas and injector.
- Macro-spray development and vaporization:
 - Liquid penetration vs. time (liquid-length)
 - Diffused back-illumination (DBI) is the reference technique for liquid-length measurements.
 - Mie-scattering (with head illumination) is also recommended.
 - Extinction profiles from DBI (both axial and radial)
 - Vapor-phase penetration (maximum axial penetration)
 - Measured with schlieren

Proposed ECN-3 definitions: Experiments

- Liquid penetration :
 - Diffused back-illumination (DBI) is the reference technique for liquid-length measurements. Both time-resolved and timeaveraged results, based on light extinction can be provided.
- Vapor-phase penetration:
 - High-speed schlieren imaging is the reference technique. DBI may also be used before a quasi-steady liquid length is established (or before liquid evaporates at the head). Measured vapor penetration has not been very sensitive to threshold or experimental arrangement.
- Axial and radial profiles of extinction with diffused back lighting:
 - Axial (centerline) and radial (every 5 mm) profiles of light extinction can be provided for comparison (2-D map is preferred)


Nozzle-hole labeling

- Use electric connector to label the nozzle-hole
- Two relative locations (hole number is labeled as 1, 2, 3 ... 8.)
- Approach: the closest hole is labeled as the first one.

Spray position for visualization

• Position 1 is required, but position 2 is also recommended.

Position 1: Rotate injector to obtain the widest spray

Position 2: Rotate injector to obtain the narrowest spray

Quantities

File Labels Quantities Liquid penetration LPL Vapor penetration VPL Extinction profile LEP Vapor mass fraction VMF Vapor mass fraction VSD standard deviation

Format of submitted results

- This is not finished.
- Text file name and formats (Time in ms, Distance in mm)
- For liquid and vapor penetrations:
- For extinction profiles:
 - Centerline profiles:
 - Radial profiles:
- GROUP = GM, CMT, IFPEN, IM, MELBOURNE, SNL